
Report # MATC-KU: 152-2 Final Report
WBS: 25-121-0005-152-2

LIDAR, Electric Bikes, and Transportation
Safety - Phase II

Christopher Depcik, PhD
Professor
Department of Mechanical Engineering
University of Kansas

2020

A Cooperative Research Project sponsored by
U.S. Department of Transportation- Office of the Assistant
Secretary for Research and Technology

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the
information presented herein. This document is disseminated in the interest of information exchange. The report is

funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation Centers
Program. However, the U.S. Government assumes no liability for the contents or use thereof.

M
ATC

LIDAR, Electric Bikes, and Transportation Safety – Phase II
Final Report

Christopher Depcik, Ph.D.
Professor
Department of Mechanical Engineering
University of Kansas

Deven Mittman
Graduate Student
Department of Mechanical Engineering
University of Kansas

A Report on Research Sponsored by

Mid-America Transportation Center

University of Nebraska–Lincoln

January 2020

ii

Technical Report Documentation Page

1. Report No.
25-1121-0005-152-2

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
LIDAR, Electric Bikes, and Transportation Safety – Phase II

5. Report Date
January 2020

6. Performing Organization Code

7. Author(s)
Christopher Depcik, Ph.D., https://orcid.org/0000-0002-0045-9554

8. Performing Organization Report No.
25-1121-0005-152-2

9. Performing Organization Name and Address
University of Kansas Department of Mechanical Engineering
1530 W 15th St
3138 Learned Hall
Lawrence, KS 66045

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
69A3551747107

12. Sponsoring Agency Name and Address
Office of the Assistant Secretary for Research and Technology
1200 New Jersey Ave., SE
Washington, D.C. 20590

Mid-America Transportation Center
Prem S. Paul Research Center at Whittier School
2200 Vine St.
Lincoln, NE 68583-0851

13. Type of Report and Period Covered
Final Report, January 2019-December
2019

14. Sponsoring Agency Code
MATC TRB RiP No. 91994-27

15. Supplementary Notes
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract
Mobile light detection and ranging (lidar) technology offers a significant opportunity to increase transportation safety and
efficiency. However, most commercial systems are prohibitively expensive for usage with consumer products like bicycles
and in widespread implementation throughout our transportation infrastructure. Therefore, cost-effective lidar systems are
needed and this effort describes the development of two options targeted for different safety outcomes. The first option
involved the generation of a lidar system that can create three-dimensional point clouds with upwards of 700,000 data
points as a cost of less than $300. Initial results highlight its potential in monitoring pavement quality as an example of its
capability in providing data for transportation-related reports. The second option built on prior electric bike (e-bike) lidar
testing efforts and created a similarly cost effective two-dimensional lidar system that was able to capture the interaction of
an e-bike with surrounding motor vehicles. Overall, both options require further refinement before extensive deployment
can take place. Nonetheless, this work demonstrates that low-cost lidar systems are a prospective route for enhancing
safety within the transportation environment.
17. Key Words
Safety, Risk, Laser radar, Bicycle travel, Bicycles, Testing

18. Distribution Statement
No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
71

22. Price

https://orcid.org/0000-0002-0045-9554

iii

Table of Contents

Disclaimer .. viii
Abstract .. ix
Chapter 1 Expansion of Mobile LIDAR Data Collection System .. 1

1.1 Abstract ... 1
1.2 Background ... 2
1.3 Hardware and Software... 4

1.3.1 Configuration I: Servo Motors ... 5
1.3.2 Configuration II: Stepper Motors... 8
1.3.3 Point Cloud Software ... 10

1.4 Results and Discussion ... 11
1.5 Conclusions ... 20

Chapter 2 Upgrades to 3-D Mobile lidar Data Collection System ... 22
2.1 Hardware Upgrades .. 22
2.2 Software Upgrades .. 27
2.3 Initial System Performance Tests ... 28
2.4 Pavement Quality Tests .. 31
2.5 Future Work .. 35
2.6 Potential System Expansion .. 36

Chapter 3 Data Collection from a 2-D lidar System Designed for Bicycles 37
3.1 Third Generation 2-D lidar System Hardware .. 37
3.2 Third Generation 2-D lidar System Software ... 45
3.3 Stationary Data Collection .. 48
3.4 Mobile Data Collection ... 55
3.5 System Diagnosis .. 60

References ... 63
Appendix A ... 68

iv

List of Figures

Figure 1.1 Configuration I illustrating the LIDAR-Lite v3 rangefinder and the two Towerpro
servos on a bent aluminum base ... 6

Figure 1.2 Wiring diagram for Configuration I with the Mega supplying energy to both the lidar
rangefinder and the servos .. 7

Figure 1.3 (Left) Isometric front view of Solidworks Computer Aided Drafting model of the
second configuration housing and (Right) Isometric front view of printed second
configuration assembly with stepper motors, motor controller, and rangefinder attached 9

Figure 1.4 Wiring diagram for Configuration II illustrating an advanced complexity over
Configuration I (figure 1.1) due to the addition of two stepper motors 9

Figure 1.5 (Left) First point cloud generated using Configuration I and (Right) the corresponding
picture location .. 12

Figure 1.6 (Top) Photo of control room for engine test cell on campus and (Bottom)
corresponding top view of the point cloud generated of this room in MATLAB 13

Figure 1.7 Front view of point cloud using Configuration II with the server box and window (see
figure 1.6 top) now distinguishable... 14

Figure 1.8 (Top) Front view reference photo for an auditorium classroom on campus with one
chair placed on top of the desk and (Bottom) the subsequent point cloud generated using
Configuration II .. 15

Figure 1.9 (Top) Point cloud with axes and (Bottom) without axes of the auditorium classroom in
figure 1.8 after implementing code upgrades to Configuration II .. 17

Figure 1.10 (Top) Reference image for the multi-cylinder engine test cell on campus and
(Bottom) the corresponding point cloud ... 18

Figure 1.11 (Top) Reference image of the Formula SAE car and (Bottom) the related point cloud
 ... 19

Figure 2.1 Circuit diagram of the 3-D lidar system .. 23
Figure 2.2 Adafruit data logger shield (Earl 2013) ... 24
Figure 2.3 Arduino Mega Proto Shield Rev3, the second stackable shield used in the 3-D lidar

system (Arduino 2019b) ... 25
Figure 2.4 The second version of the 3-D lidar system as assembled .. 27
Figure 2.5 Corner of room scanned for initial 3-D lidar testing ... 29
Figure 2.6 Point cloud model of room corner in figure 2.5 .. 29
Figure 2.7 Models of empty beaker, beaker filled with clean water, and beaker filled with dirty

water (from left to right) ... 30
Figure 2.8 Scanned pothole with a tape measure providing one foot as a reference 32
Figure 2.9 Modeled pothole from figure 2.8 ... 33
Figure 2.10 The second scanned pothole .. 34
Figure 2.11 The lidar data from the second scanned pothole of figure 2.10 34
Figure 3.1 Terabee 60 m Evo lidar distance sensor (TeraBee 2017) .. 38
Figure 3.2 Arduino Mega 2560 microcontroller (Arduino 2019a) ... 38
Figure 3.3 Third-generation 2-D lidar system circuit diagram ... 39
Figure 3.4 Bipolar stepper motor used in the 2-D lidar system (Trinamic Motion Control GmbH

& Co. KG 2019) .. 40
Figure 3.5 Adafruit micro SD card breakout board (Adafruit 2019) .. 41

v

Figure 3.6 Main housing box model for 2-D lidar system (left) and removable front wall (right)
 ... 42

Figure 3.7 3-D CAD models of block stand for motor (left) and lidar rangefinder mount (right) 43
Figure 3.8 Assembled 2-D lidar system closed (top left) and wall removed (top right) 44
Figure 3.9 Empty sections of Arduino C++ code ... 46
Figure 3.10 Blind spot LEDs mounted on e-bike handlebars to identify obstacles in left, center,

and right lanes. .. 47
Figure 3.11 Image of initial 2-D lidar system test area ... 49
Figure 3.12 Two sweeps of the 2-D lidar system during initial stationary testing 50
Figure 3.13 Only lidar data registered during stationary test is a false positive of the road divider:

visual (left) and data model (right) ... 51
Figure 3.14 Successful stationary testing with moving vehicles in 30 mph speed limit (left) and

lit right lane LED with resulting model of snapshot (right) .. 52
Figure 3.15 Visual of car (left) registered at a maximum speed of 15 mph (right) 55
Figure 3.16 Completed 2-D lidar system mounted on the back of the electric bicycle 56
Figure 3.17 Typical visual behind e-bike (left) and sweep data (right) from first mobile test with

downward lidar angle .. 57
Figure 3.18 Example of successful data collection and blind spot monitoring of stationary

vehicles during a mobile test: visual camera (left) and lidar modeling (right) 57
Figure 3.19 Example of successful data collection and blind spot monitoring of moving vehicle

during a mobile test: visual camera (left) and lidar modeling (right) 58
Figure 3.20 Skewed data caused by rapid turning of e-bike during data collection: visual camera

(left) and lidar modeling (right) .. 59
Figure 3.21 Leaning while turning the e-bike causes a false-positive result: visual camera (left)

and lidar modeling (right) ... 60

vi

List of Tables

Table 3.1 Lidar system timing conditions with a 100° sweep angle and optimized software

running time of 0.021 s ... 53

vii

List of Abbreviations

American Standard Code for Information Interchange (ASCII)
Computer-Aided Design (CAD)
Double-Pole, Single-Throw (DPST)
Electric Bike (e-bike)
Ground (GND)
Highway Performance Monitoring System (HPMS)
In-Circuit Serial Programming (ICSP)
Input/Output (I/O)
Inter-Integrated Circuit (I2C)
Infrared (IR)
Light Emitting Diode (LED)
Light Detecting and Ranging (LiDAR)
Light Imaging Detection and Ranging (lidar)
Light Imaging Detection and Ranging (LIDAR)
Matrix Laboratory (MATLAB)
Megabytes (MB)
Mid-America Transportation Center (MATC)
Miles per Hour (mph)
Nebraska Transportation Center (NTC)
Printed Circuit Board (PCB)
Revolutions per Minute (rpm)
Secure Digital (SD)
Serial Clock Line (SCL)
Serial Data Line (SDA)
Single-pole, Single-Throw (SPST)
Three-Dimensional (3-D)
Two-Dimensional (2-D)
Universal Asynchronous Receiver/Transmitter (UARL)
Universal Serial Bus (USB)
Volts Direct Current (VDC)

viii

 Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and the accuracy of the information presented herein. This document is disseminated in the

interest of information exchange. The report is funded, partially or entirely, by a grant from the

U.S. Department of Transportation’s University Transportation Centers Program. However, the

U.S. Government assumes no liability for the contents or use thereof.

ix

 Abstract

 Mobile light detection and ranging (lidar) technology offers a significant opportunity to

increase transportation safety and efficiency. However, most commercial systems are

prohibitively expensive for usage with consumer products like bicycles and in widespread

implementation throughout our transportation infrastructure. Therefore, cost-effective lidar

systems are needed and this effort describes the development of two options targeted for

different safety outcomes. The first option involved the generation of a lidar system that can

create three-dimensional point clouds with upwards of 700,000 data points as a cost of less than

$300. Initial results highlight its potential in monitoring pavement quality as an example of its

capability in providing data for transportation-related reports. The second option built on prior

electric bike (e-bike) lidar testing efforts and created a similarly cost effective two-dimensional

lidar system that was able to capture the interaction of an e-bike with surrounding motor

vehicles. Overall, both options require further refinement before extensive deployment can take

place. Nonetheless, this work demonstrates that low-cost lidar systems are a prospective route for

enhancing safety within the transportation environment.

1

Chapter 1 Expansion of Mobile LIDAR Data Collection System

Note: This chapter is published as Wiklund, T., Heim, M., Halberstadt, J., Duncan, M., Mittman,

D., DeAgostino, T., and Depcik, C., “Design and Development of a Cost-Effective LIDAR

System for Transportation,” Proceedings of the ASME 2019 International Mechanical

Engineering Congress and Exposition, November 11-14, Salt Lake City, UT, USA, 2019, doi:

10.1115/IMECE2019-11279.

1.1 Abstract

Light Imaging Detection and Ranging (LIDAR) cameras and Light Detecting and

Ranging (LiDAR) rangefinders were initially implemented in the 1960s as a higher-resolution

and increased capability alternative to radar. Since then, LIDAR and LiDAR (hereto called lidar)

have expanded into applications in aerial geographical surveying and collision-detection systems

for autonomous vehicles. Current commercial systems are relatively expensive and potentially

oversized for non-commercial applications. Consequently, this deters their use on consumer

products like bicycles, where lidar systems can enable safety advancements that are necessary to

counter the rising numbers of hazards affecting riders. In addition, widespread usage of

inexpensive lidar systems can facilitate a more complete picture of our transportation

infrastructure by delivering information (e.g., pavement quality) suited for U.S. Department of

Transportation Highway Performance Monitoring System (HPMS) reports. This will aid in the

creation of a safer infrastructure by highlighting critical areas in need of improvement and repair.

As a result, this effort outlines the development of a compact and cost-effective lidar

system. The constructed system includes the ability to generate a static image by collecting

several hundred thousand distance signals measured by a lidar rangefinder. Since the rangefinder

has no self-contained rotation or translation systems, an Arduino Mega 2560 v3 microcontroller

2

operates a pair of stepper motors that adjusts its azimuthal angle and pitch. Coalescing these

signals into an ASCII text file for viewing in MATLAB results in a reasonably accurate picture

of the surroundings. While the current system takes 1-2 hours to complete a full sweep, it has the

potential to provide sufficient accuracy for HPMS reports at a moderate expenditure: the entire

system costs less than $300. Finally, upgrading to a more powerful microprocessor,

implementing slip rings for enhanced electrical connectivity, and refining the code by including

interpolation between points will enable faster point cloud generation while still maintaining an

inexpensive device.

1.2 Background

Methods of transportation can vary for individuals depending on weather, destination,

purpose, or other factors. Some might use public transit, personal vehicles, bicycles, or walking

as their preferred mode of transportation. Unfortunately, this wide variance of options with

disparate speeds results in a complex environment with vehicular collisions accounting for a

quarter (24.9%) of all accidental deaths in the United States in 2016 (Xu et al. 2018).

Understandably, safety is a major concern for most commuters and while the number of

accidents has decreased in the past, there has been a recent rise since 2014 (National Center for

Statistics and Analysis 2018).

A primary safety concern is the existence of blind spots. Typically, rear and side-view

mirrors help drivers monitor the area behind them. While additional mirrors are suggested to

completely eliminate blind spots, watching multiple mirrors will slow drivers’ reaction time

(Mole and Wilkie 2017). Therefore, it is preferable to monitor the area surrounding the vehicle

or bicycle via another system. A detection system to alert drivers, visually and/or audibly, would

help improve reaction time while potentially providing more consistent benefit than mirrors

3

alone. A secondary safety issue includes the condition of the road. Inadequate road infrastructure

is listed as a frequent cause of single-vehicular mishaps, especially rollover accidents

(Goniewicz et al. 2016, Anarkooli, Hosseinpour, and Kardar 2017). With the United States

infrastructure currently in poor condition (American Society of Civil Engineers 2019), having a

detection system monitor road conditions in addition to blind spots would result in a significant

opportunity to improve safety.

Lidar is one remote sensing method that can facilitate an effective monitoring of both

safety concerns. Briefly, lidar works similar to radar systems by using near visible light waves

instead of radio waves and can map the surrounding environment in three-dimensions (3-D)

(Puente et al. 2013). Current applications for drone-mounted aerial lidar systems include forest

mapping to track growth, modeling forest fire behavior, classifying land and environmental

types, and charting various other environments for a variety of purposes (Kelly and Di Tommaso

2015, Garcia-Gutierrez, Goncalves-Seco, and Riquelme-Santos 2011, Yang et al. 2013, Chiang

et al. 2017). Additionally, ground-based mobile lidar systems can recognize various road types

and identify defects in their respective surfaces while monitoring the environment surrounding

roads for potential dangers (Kromer et al. 2015). In areas where valleys and other steep slopes

are adjacent to roads, rail lines, and canals, landslides are detrimental to transportation and

infrastructure. Here, lidar systems can be used to inspect surface material and identify changes

and patterns that might lead to landslides (Neupane and Gharaibeh 2019).

While these applications illustrate lidar’s propensity to provide accurate and detailed

representations, it is often costly to collect these data while respectively difficult to analyze the

point cloud files that result from the collocation of this information (Kelly and Di Tommaso

2015). Commercial lidar systems are highly capable; however, their individual cost ($6k to

4

$100k (Lienert and Nellis 2019)) might be excessive for numerous vehicle-mounted systems. For

instance, a vehicular system does not have to scan wide areas of land at a time, only the

immediate vicinity if there is a targeted goal in mind (e.g., road conditions versus automated

driving). Hence, designing an inexpensive and small lidar system to identify vehicle, pedestrian,

and bicycle proximity along with road defects could significantly benefit transportation safety

while providing for widespread implementation.

As a result, this effort describes the design of a more accessible and inexpensive lidar

system while briefly discussing the potential impact it can have for transportation safety. First,

two configurations of the hardware employed are presented highlighting a change from

servomotors to stepper motors to enhance accuracy. Next, a straightforward methodology in data

collection is indicated to generate the point cloud information via text files. Finally, the

implementation of both configurations is presented stressing the lessons learned while

culminating in the development of an instrument that should cost less than $300 and be capable

of producing relatively accurate 3-D point clouds.

1.3 Hardware and Software

Since lidar uses infrared light, its wavelength (e.g., 905 nm) is reduced significantly in

comparison to comparable radar systems (e.g., 50 cm). This provides it the capability to generate

a high-resolution image (aka high point density point cloud). Lidar rangefinders determine the

distance of objects by emitting short pulses of light and recording the time it takes for this light

to return to the detector. Object distance is determined by multiplying the speed of light by half

the time it took the laser pulse to return. Subsequently, combining this distance with known

horizontal and vertical angles of the rangefinder determines the x, y, and z positions of individual

points. A point cloud is generated from this 3-D map using an appropriate software program.

5

The fabrication of a complete lidar system includes integrating a lidar rangefinder with

some mechanism of sweeping this component in three-dimensions. Furthermore, a

microprocessor is required to process and store these data. Previous experience in creating this

lidar system for the back of an electric bicycle demonstrated limited success and generated only

two-dimensional information (Blankenau et al. 2018). Building on this prior knowledge, this

effort expanded the system’s capabilities into 3-D via two successive hardware configurations. In

both configurations, the Garmin LIDAR-Lite v3 module is employed since it has a greater range

and accuracy (40 m ± 10 cm) than other inexpensive alternatives: e.g., Taidacent TOF 10120

(1.8 m ± 5%) and the Benewake TF Mini (12 m ± 6 cm). The LIDAR-Lite v3 also provides

several different configuration settings that can be explored to enhance resolution accuracy.

1.3.1 Configuration I: Servo Motors

Learning from the preceding effort, an Arduino Mega 2560 Rev3 (16 MHz: henceforth

Mega) was used as the microprocessor instead of an Adafruit Feather System or a Raspberry Pi

3B+. The open-source Arduino Integrated Development Environment and modified C++

programming language is well documented and respectively easy to learn for undergraduate

students (the primary authors of this paper). Furthermore, Garmin officially supports the LIDAR-

Lite v3 rangefinder on the Arduino platform and a library is supplied on Github (Garmin Ltd.

2018). In contrast, while the Adafruit system worked previously, it did not provide sufficient

processing speed and tended to be unreliable. Moreover, while the greater processing speed of

the Raspberry Pi 3B+ (1.4 GHz, 64-bit quad-core) is advantageous for mobile systems, the

primary issue of the aforementioned efforts suggested the focus be on point cloud accuracy over

computational speed. This goal, when combined with a greater difficulty in learning the native

Raspbian operating system and Python programming language (along with the LIDAR-Lite v3

6

not being officially supported on the Raspberry Pi platform), further solidified the choice of the

Mega.

Figure 1.1 Configuration I illustrating the LIDAR-Lite v3 rangefinder and the two Towerpro
servos on a bent aluminum base

7

Figure 1.2 Wiring diagram for Configuration I with the Mega supplying energy to both the lidar
rangefinder and the servos

In the first configuration shown in figure 1.1, two TowerPro MG996R digital metal gear

servomotors were employed to rotate in the x-y and y-z directions, respectively. A laptop

computer supplied power for the entire system and a capacitor was used to protect the

rangefinder from voltage spikes or current bursts. In figure 1.2, the rangefinder and Mega

communicated over the Inter-Integrated Circuit protocol using Serial Data Line and Serial Clock

Line Mega pins, colored blue and green in the figure, respectively. Furthermore, signals to the

servos were sent using the Mega’s Pulse Width Modulation pins.

Programming of the servomotors included adding a servo library to the Arduino code

(Arduino 2019e). Using the angles of the motors retrieved from this library during operation,

trigonometry was employed to calculate the x, y, and z-coordinates of each distance measured

from the rangefinder. Unfortunately, the servos chosen could only rotate 180º in 1º increments.

8

As a result, this configuration was unable to create a spherical point-cloud and had a relatively

large degree per step value.

1.3.2 Configuration II: Stepper Motors

Similar to Configuration I, the Mega was used as the microprocessor for Configuration II.

Now, two Kiatronics 28BYJ-48 5 VDC stepper motors, controlled by a Kiatronics ULN2003

motor controller, were employed to move the rangefinder. Each stepper motor had a gear

reduction of 1/64 allowing for a rotation of 0.08º per step, facilitating a significant improvement

in point cloud resolution (shown later in Section 1.4).

9

Figure 1.3 (Left) Isometric front view of Solidworks Computer Aided Drafting model of the
second configuration housing and (Right) Isometric front view of printed second configuration

assembly with stepper motors, motor controller, and rangefinder attached

Figure 1.4 Wiring diagram for Configuration II illustrating an advanced complexity over
Configuration I (figure 1.1) due to the addition of two stepper motors

10

During testing of Configuration I, the bent aluminum structure (figure 1.1) flexed during

operation resulting in the rangefinder not rotating around a fixed point in space. Moreover, the

motor shafts did not line up to the fixture point of the rangefinder resulting in data that did not

have a common origin. Instead, the second configuration included a 3-D printed housing, as

illustrated in figure 1.3, which provided a solid base, minimized vibration during usage, and

created a common origin. This housing was printed from acrylonitrile butadiene styrene using

two Stratasys Mojo fused deposition modeling printers and took 9.1 hours to complete while

utilizing 5.7 in3 of material.

Like the first configuration in figure 1.2, wiring of the second version in figure 1.4

involved power being supplied by a laptop computer and a capacitor was implemented to protect

the rangefinder. Now, the Mega communicated with two motor controllers connected to the

stepper motors that operate using four electromagnets. These motors can be rotated at half steps

between the magnets enabling an advanced resolution. Unfortunately, the available Arduino

stepper motor library did not properly communicate with these motor controllers (Arduino

2019f). Therefore, code was written to directly change the voltages of the electromagnets inside

these motors, one magnet at a time.

1.3.3 Point Cloud Software

The data coming from a rangefinder includes the raw distance; hence, the most

straightforward format for generating point clouds is through the American Standard Code for

Information Interchange (ASCII) .xyz file type that features three columns of x, y, and z-

coordinates for the thousands of points in a point cloud. Most commercial software packages that

generate point clouds are setup to read the industrial standard .las and .laz lidar data. While

initially the Trimble Realworks Viewer 11.0 was used because it can plot both .xyz and .las

11

formats enabling a transition between the generated raw distance data into the industry format, it

was decided to employ MATLAB as an alternative point cloud processing tool.

The LIDAR-Lite v3 rangefinder utilized is not capable of detecting color and is not

officially supported to provide signal strength data. Whereas, .las and .laz file types allow for

incorporation of color and signal strength. Furthermore, the students involved in this effort are

familiar with MATLAB programming through their undergraduate curriculum. As a result,

MATLAB code was generated that can parse data arrays from the Arduino system and

concatenate this information into x, y, and z-coordinates. When reviewing these data in the

following section, it was found that some datasets had points that were not near the subject of

interest; i.e., random outliers. Code was added to filter this outlying data to ensure presentation

of only the area of interest. These data are then plotted using the 3-D scatter plot option in

MATLAB with color used as the legend to determine the distance away from the rangefinder.

Except for one instance, ASCII .xyz text files were used to generate the point cloud images in the

next section.

1.4 Results and Discussion

The first point cloud generated using Configuration I and plotted using the Trimble

Realworks Viewer is illustrated in figure 1.5. Overall, these data took four minutes to capture

and the servomotors were programmed to rotate 30º horizontally and 45º vertically. While the

edge of the monitor on the right is somewhat visible in the point cloud at a slightly different

angle, the overall point cloud resolution is poor. It is possible that the monitor screen material

interfered with the rangefinder’s laser pulses by absorbing or reflecting them away from the

rangefinder; hence, it shows up as an empty screen area. In addition, while the monitor on the

left is partially visible in the point cloud, the window behind the monitors prevented any further

12

details from appearing as the laser pulses went through into the next room and did not return to

the rangefinder.

Figure 1.5 (Left) First point cloud generated using Configuration I and (Right) the
corresponding picture location

At this point, a second set of data were taken using Configuration I to see if any

improvements could be made to the setup or the underlying Arduino code. This time MATLAB

was used to generate the point cloud with the corresponding picture and point cloud shown in

figure 1.6. It took eight minutes to generate these data and during this process the aluminum

mount was seen to wiggle after each horizontal sweep was completed, resulting in the double

image seen in this point cloud. The point cloud still has a respectively poor resolution and the

system loses accuracy as the distance from the rangefinder increases; i.e., the points get further

apart the farther they are away from the rangefinder.

13

Figure 1.6 (Top) Photo of control room for engine test cell on campus and (Bottom)
corresponding top view of the point cloud generated of this room in MATLAB

It was at this point that Configuration II was constructed to increase the number of data

points taken from about 3,000 data points in Configuration I to 15,000-20,000. This upgraded

system took ten minutes to collect the same picture location as figure 1.6. Figure 1.7 illustrates

that the service box on the wall to the right of the window is now more clearly seen jutting out of

the wall along with the window itself becoming distinguishable. The walls are now discernable

and a large cylindrical pipe near the ceiling is present. The respectively bright rectangular light

14

can (somewhat) be seen lower in the image and closer to the rangefinder. Of importance, the

filtering routine implemented in MATLAB removed data behind the window because it skewed

the overall point cloud picture. In the point cloud figures moving forward, the legend color

indicates the distance in [cm] from the rangefinder in all three-directions.

Figure 1.7 Front view of point cloud using Configuration II with the server box and window (see
figure 1.6 top) now distinguishable

However, when attempting to capture a classroom on campus with numerous objects

(figure 1.8), respectively few distinguishing characteristics are seen. Except for the overall shape

of the auditorium and the ceiling, there are not many recognizable features. Upon reviewing the

Arduino code, it was found that there was a mistake in the electromagnet voltage specifications

that limited the horizontal resolution of the point clouds. Many unique processing steps were

counted as the same step that caused the resulting point clouds to have multiple points in one

location. Furthermore, this version of the code incremented the vertical motors as a full rotation

15

around the magnets. This caused a relatively large jump in the angle upwards when it could have

been respectively smaller. Both figure 1.7 and figure 1.8 illustrate these issues with numerous

points in the horizontal direction missing along with a reduced accuracy (i.e., jumps) in the

vertical direction.

Figure 1.8 (Top) Front view reference photo for an auditorium classroom on campus with one
chair placed on top of the desk and (Bottom) the subsequent point cloud generated using

Configuration II

16

A subsequent upgrade to the code fixed the horizontal bug that augmented the resolution

in this direction by seven times. Moreover, additional code was written to loop half steps

between each electromagnet of the vertical motor. Rather than a full rotation around all four

magnets, the motor rotated once between magnets one and two. After another horizontal sweep,

the vertical motor then moved to magnet two. After another horizontal sweep, the motor moved

between magnets two and three, and so on. This amplified the vertical resolution by seven times;

hence, bringing the total resolution growth to forty-nine times the previous code. Unfortunately,

this increased resolution created a data collection issue. After 300,000 data points are collected,

the serial monitor within the Mega began deleting distance measurements collected from the

beginning of a test. Currently, a third-party serial monitoring program (CoolTerm (Meier 2019))

is installed in the laptop that uses the same communication port connected to the Arduino and

writes these data directly to a text file. Ideally, direct communication between Arduino and

MATLAB would allow MATLAB to read these serial monitor data and plot the point cloud in

real time while fixing the data deletion issue.

Figure 1.9 presents the updated Configuration II point cloud for the same location as

figure 1.8. This data set took 130 minutes to create, contained over 700,000 points, and generated

a text file with a size of 8 MB. Nearly all seats are clearly visible, especially those close to the

front. Moreover, the chair placed on top of the desk in the middle of the classroom is seen

clearly. On the left side of the auditorium and to the right of the left walkway, one outlet on

every desk starting from the front and ending towards the back was lifted. While difficult to see

in this figure, after expanding the image to a larger size, these outlets are shown as small bumps

in the point cloud.

17

Figure 1.9 (Top) Point cloud with axes and (Bottom) without axes of the auditorium classroom
in figure 1.8 after implementing code upgrades to Configuration II

This success led to another point cloud being taken of a multi-cylinder engine test cell on

campus in figure 1.10. This dataset took 85 minutes to create and data beyond a certain range

were removed to better utilize color grading within MATLAB for the subjects of interest. After

18

deletion, there remains about 200,000 points with the dynamometer on the right hand side of the

engine clearly seen. In addition, the curved pipe starting at the floor and ending at the engine is

noticeable. It is important to note that only the default settings on the rangefinder were used;

hence, configuring it to its short-range option might increase the detail in scenarios, such as

figure 1.10, where the objects are closer to the rangefinder.

Figure 1.10 (Top) Reference image for the multi-cylinder engine test cell on campus and
(Bottom) the corresponding point cloud

19

To highlight how data post-processing can improve point cloud detection of the subject

of interest, figure 1.11 presents a picture and point cloud of a Formula SAE car. By strategically

removing data points beyond a certain distance, the picture of the vehicle becomes rather

recognizable. This demonstrates that successful lidar usage requires the fabrication of a capable

hardware system coupled to efficient software routines.

Figure 1.11 (Top) Reference image of the Formula SAE car and (Bottom) the related point cloud

20

Overall, this effort illustrates that higher resolution point clouds take significantly longer

to create. Placing a system with this level of detail onto mobile platforms (e.g., electric bikes)

where immediate knowledge of threats is needed appears unfeasible. Instead, like the previous

effort, use of a rangefinder in conjunction with a camera can sweep an area significantly faster;

hence, detecting vehicles more quickly along with the distance of that vehicle to alert riders of

potential danger. Other possibilities include integrating this rangefinder with more extensive

software algorithms that can track objects of interest (Jeon and Rajamani 2019). However, this

system appears suitable for delivering information for HPMS reports including, but not limited

to: traffic information to mitigate roadway delays, accident/crash investigation, soil and rock

slope stability, flood risk mapping, pavement quality monitoring, and clearance data for highway

overpasses and power lines (Williams et al. 2013). Since the total system cost is less than $300

(not considering the 3-D printed mount estimated at less than $30), it is possible to facilitate

widespread implementation of lidar across the entire transportation infrastructure to enhance the

information gathered. Finally, moving to a Raspberry Pi 3B+ microprocessor and implementing

slip rings in the setup can help create a stand-alone system that is robust, fast, and, in

combination with code upgrades that include interpolation between points, can generate high

quality point clouds at a minimum expenditure.

1.5 Conclusions

The extensive application of lidar systems throughout the transportation infrastructure

can facilitate a safer environment for travelers. These systems can enable the public to be aware

of imminent threats while helping highlight critical areas in need of improvement and repair.

However, current commercial lidar systems are relatively expensive, subsequently reducing their

potential widespread feasibility. This effort endeavored to minimize expenditures when

21

attempting to generate a lidar system of similar accuracy to commercial options. This was

accomplished by utilizing a Garmin LIDAR-Lite v3 as the rangefinder and an Arduino Mega

2560 v3 microcontroller in combination with two stepper motors. Overall, it was possible to

generate relatively accurate point clouds in MATLAB from ASCII text files with upwards of

700,000 data points. With a cost less than $300 (not including a 3-D printed mounting), this

increases the possibility of wide-ranging implementation. Currently, this system is not suitable

for mobile applications as data collection time took around 1-2 hours. Nevertheless, the system

appears suitable for delivering information for public transport reports. Finally, potential

upgrades to the system (e.g., microprocessor and slip rings) can further improve speed,

robustness, and accuracy while not significantly growing its cost.

22

Chapter 2 Upgrades to 3-D Mobile lidar Data Collection System

The previous chapter describes the first generation of a 3-D mobile lidar collection

system targeted for transportation-related activities. This chapter details upgrades to that system

accomplished since the publication of the work.

2.1 Hardware Upgrades

A second version of the 3-D lidar system improves on some of the previous design flaws,

decreases its size and weight, and enhances mobility. This second version keeps the system

circuitry and electrical components as similar as possible while allowing these improvements.

The Garmin lidar rangefinder, Arduino microcontroller, motors, and motor housings are the

same as the first version to lessen the potential for electrical problems. However, the motor

controller circuit boards, capacitor for the lidar rangefinder, and connections made on the

breadboard are soldered directly onto stackable protoboard shields. Additionally, the second 3-D

lidar system includes a self-contained battery power supply, data storage, and a power switch as

illustrated in figure 2.1.

The major issues with the first system are that it required connections to both a large

power supply attached to a wall outlet and a computer to collect data in real-time. Hence, the

goal was to make the second 3-D lidar system completely portable along with being easy to

transport and use. Therefore, the power supply must be self-contained in the system. As a result,

power is now divided between two battery packs at the bottom of the system. The first battery

pack has a voltage of 9 VDC and supplies power to the Arduino microcontroller through the

power switch connected to the Vin and GND pins (figure 2.1). However, this battery pack does

not provide enough power for every component of the lidar system through the microcontroller.

In specific, the two stepper motors require more current than the Arduino microcontroller can

23

supply, which causes a rapid voltage drop and results in the system turning itself off for

protection. Therefore, a second battery pack of 6 VDC supplies power directly to the stepper

motors through the same power switch as before, without running current through the

microcontroller. Here, it is important to note that the stepper motors are still controlled by the

Arduino microcontroller; i.e., the motors simply get their power from a separate source.

Figure 2.1 Circuit diagram of the 3-D lidar system

A second issue with the initial 3-D lidar system was its inability to save data on board the

device. Instead, it collected data through the serial readout on a connected laptop computer and

manually saved these data to a .txt file once data collection was finished. The second 3-D lidar

system addresses this issue by including a Secure Digital (SD) card. This SD card connection is

pre-mounted on a data logging shield that has an area for direct soldering of the circuitry to the

24

board (Earl 2013). The Adafruit data logging shield (figure 2.2) is the same size as the popular

Arduino Uno microcontroller and is smaller than the Mega 2560 microcontroller used in this

system. However, the two boards are still stackable. Here, the Mega 2560 simply extends past

the end of the data logging shield. This top shield holds the double-pole, single-throw (DPST)

power switch, and lidar capacitor. In addition, it connects the data storage lines through the In-

Circuit Serial Programming (ICSP) connections to the necessary pins on the Arduino

microcontroller. Furthermore, because this shield has no obstructions to tangle wires as they

move, the Garmin lidar rangefinder’s Inter-Integrated Circuit (I2C) and power lines are

connected to the microcontroller though the corresponding pins on this shield.

Figure 2.2 Adafruit data logger shield (Earl 2013)

https://learn.adafruit.com/assets/58610

25

Figure 2.3 Arduino Mega Proto Shield Rev3, the second stackable shield used in the 3-D lidar
system (Arduino 2019b)

The stackable shields allow the Arduino Mega 2560 microcontroller to expand the

number of possible connections and helps to permanently connect circuits directly to the board;

i.e., eliminating the less permanent breadboard connections employed in the prior system. The

second shield employed is the Arduino Mega Proto Shield Rev3 (figure 2.3). It is the same size

as the Mega 2560 and is a printed circuit board (PCB) (Arduino 2019b). The circuitry needed to

power and control the stepper motors and the SD card are soldered onto this shield. To save

space, the motor controller boards in the first design were recreated with the same transistors and

the stepper motor pin connectors were directly soldered on the proto shield (Geeetech Wiki

2012). Additionally, the ICSP lines from the top data logging shield are connected to the

microcontroller through this protoboard shield.

The stepper motors and their housing are unchanged from the first 3-D lidar system

(figure 1.3). The horizontal motor turns the vertical motor and its housing, and the vertical motor

turns the lidar rangefinder. However, the motor controller boards were eliminated and replaced

with only their primary components onto the second protoboard shield in the new 3-D lidar

system. Each motor controller board consisted of pin connections to the motor and the Arduino

26

microcontroller, a ULN 2003a Darlington transistor, power supply connections, and indicator

LEDs to show the state of the motor at any given time. As the LEDs are not necessary for proper

motor function, they were left off the new system design. One of the components from the motor

controller board that was necessary to include is the Darlington transistor, which sends the

control signal from the microcontroller to the motor and supplies the motor's power. A second

needed component from this board is the female pin connector to fit the male connector of the

motor wires (Geeetech Wiki 2012). While the Darlington transistors are short and easily fit

beneath the data logger shield installed above the protoboard shield, the female motor pin

connectors are too tall and were installed in the area not covered by the smaller data logger

shield.

As previously mentioned, the Garmin lidar rangefinder is the same version used in the

previous 3-D lidar system. Therefore, the correct connections between the rangefinder, 680 μF

capacitor, and the microcontroller pins are already known. The Garmin Lidar Lite v3 rangefinder

is connected to through the top data logger shield to allow freedom of motion as it rotates during

data collection. This rangefinder has several different modes of operation suitable for numerous

purposes ranging between long and short-distance measurements, high speed and high accuracy,

and a general balance data collection.

27

Figure 2.4 The second version of the 3-D lidar system as assembled

 Assembled, the new 3-D lidar system is a fraction of the size and weight of the previous

system (figure 2.4). Additionally, the new system is entirely self-contained and portable. It does

not need to be connected to a power outlet or computer to receive power or save data.

2.2 Software Upgrades

The program code has undergone several alterations from the first version of the 3-D

lidar system. First, the new code includes a Stepper.h library to simplify control of the motors.

Without this library, the eight possible input combinations of the motors' pins must be described

at the start of the code explicitly. In the new version, this library reduces the initialization down

to one line of code that performs the same function and turns the motors as needed. In particular,

the horizontal motor turns one step after every data point until it reaches the end of its sweep

angle at which point it turns the opposite way. When the horizontal motor changes direction, the

vertical motor turns one step upwards. As a result, the lidar system thoroughly covers a 3-D

space and never collects the same data point twice.

28

The second major change from the first program is the inclusion of a SD.h library. Since

the first 3-D lidar system did not utilize an SD or other memory card, there was no need to use

such a library. Here, the SD.h library allows the system to communicate with the

microcontroller, access information, create, edit, and save data files onto an SD card (Arduino

2019d). The data saved to the SD card is a .txt file consisting of the horizontal motor's angle

(azimuth), the vertical motor's angle (elevation), and the lidar distance measurement. The system

is programmed to save each data point to a data file and will end the program once the entire set

volume has been mapped. Then, the data file is uploaded to a computer for modeling using a

similar MATLAB code as prior accomplished. This MATLAB code converts the azimuth,

elevation, and distance values to corresponding Cartesian points, filters out extraneous or flawed

data points, and creates a scatter plot of the data.

2.3 Initial System Performance Tests

A performance test was run on the upgraded 3-D lidar system by modeling a portion of a

room. This serves to identify potential issues with the system and provides a functioning

comparison with the previous 3-D system. As stated prior, the lidar data and motor positions are

saved to a data file and modeled as a point cloud in MATLAB. The initial positions of both

motors and the system’s orientation must be noted for each test as these factors will affect the

accuracy of the computer model.

29

Figure 2.5 Corner of room scanned for initial 3-D lidar testing

Figure 2.6 Point cloud model of room corner in figure 2.5

The portion of the room in the initial test covers an upper corner, windows, and an

exterior wall visible through the windows (figure 2.5). The 3-D lidar system scanned 90°

horizontally and 45° vertically in about an hour, resulting in over 123,000 data points. Overall,

the resulting model appears accurate (figure 2.6). However, the point cloud model is less

accurate around the windows and the recessed lighting in the ceiling. In specific, the model

shows large rectangular recesses in the ceiling where lighting is located. These greater recesses

30

could possibly be due to the corrugated texture of the lighting panels reflecting the lidar.

Moreover, it could be a function of using lidar to directly scan a source of near infrared light as it

can interfere with its distance calculations. The impact of secondary light sources is discussed

further in the following chapter when testing a mobile 2-D lidar system. Furthermore, the 3-D

lidar system can detect the exterior wall visible through the windows. This is not surprising as

inferred light has a wavelength near visible light and will behave similarly. As the wall can be

seen through the glass by the human eye, the 3-D lidar system can also detect it. However, the

data collected in figure 2.6 is not perfect as glass can diffract the signal and slightly skew the

data.

In order to further investigate the capabilities of the 3-D lidar system when it comes to

different materials, a secondary test was accomplished. Since this system is meant to be

employed in a transportation environment, the most common material it may encounter outside is

water. As such, the system was set to measure an empty beaker, a beaker filled with clean water,

and a beaker filled with dirty water. The lidar system was set on a table facing the beakers and

the results are provided in figure 2.7

Figure 2.7 Models of empty beaker, beaker filled with clean water, and beaker filled with dirty
water (from left to right)

31

As expected, the empty beaker did not interact with the lidar system as an opaque object

would. Instead, both the empty and clean water beakers reflected the lidar signal at the curved

edges of the beaker, where the lidar signal would pass through the most amount of solid glass. At

a more perpendicular angle, the glass and clean water allow the signal to pass straight through

and the system only detects the wall behind the beaker. In comparison, a beaker filled with dirty

water provided a greater interaction with the lidar signal; however, it still did not result in a

model highlighting a beaker shape. This is an important finding as it might somewhat limit the

applications of lidar around bridges and bodies of water.

2.4 Pavement Quality Tests

A potential usage for this 3-D lidar system is to accurately map road conditions and

determine pavement quality, such as potholes in the surface of the road. To demonstrate this

outcome, the upgraded 3-D lidar system was tested to see if it could accurately model potholes

while stationary. Due to the housing design, the lidar rangefinder is unable to point at a steep

downward angle. Therefore, to map a pothole, the lidar system must either be placed further

away from the pothole, or the system can be turned on its side such that the housing no longer

inhibits the motion of the lidar rangefinder. As a result, to increase data point density and limit

the possibility of external interference, the lidar system was situated near a couple potholes and

oriented sideways.

32

Figure 2.8 Scanned pothole with a tape measure providing one foot as a reference

The system was then positioned, turned on, and left alone until it completed scanning a

couple potholes and their surrounding road surface. One such pothole is illustrated in figure 2.8

with a tape measure indicating a reference foot of measurement. Then, as before, the lidar

distance and motor position data, along with the orientation of the system are modeled in

MATLAB to produce a rendering of the pothole in figure 2.9.

33

Figure 2.9 Modeled pothole from figure 2.8

The model of the first pothole shows the lower parts in the darker areas. The single

straight edge on the left side of the pothole in figure 2.8 can also be seen on the left side of the

model in figure 2.9. However, the pothole is relatively shallow and lacks hard edges. Therefore,

the rest of the model is difficult to match to the pothole. Moreover, the rotational nature of the

data captured does not provide a one-to-one direct comparison between the model and the

picture.

The second pothole modeled is a smooth bowl shape in the pavement (figure 2.10). While

this pothole is deeper than the first, it still lacks definite edges. As a result, the model of the

second pothole shows the dramatic change in pavement surface closer to the lidar system.

However, farther away, the changes in the surface become less apparent as the lidar signal

interacts with the pavement at a shallower angle (figure 2.11). Again, the rotational nature of the

model prevents a straightforward comparison between the model and the picture.

34

Figure 2.10 The second scanned pothole

Figure 2.11 The lidar data from the second scanned pothole of figure 2.10

35

2.5 Future Work

While the 3-D lidar system can reasonably identify dramatic changes in the pavement

surface, data collection is relatively slow. Each pothole requires the system to remain motionless

for 20 minutes. To increase data collection speed, the step angle of the motors between each data

point can be increased. This will decrease the sweep time, but it will reduce the density of the

data. Another option to increase data collection speed is to implement a faster data processor in

the microcontroller. The Arduino Mega 2560 microcontroller has an operating speed of 16 MHz

(Arduino 2019a). A faster microprocessor, such as the Raspberry Pi 4B, which has a 1.5 GHz

processor, would be able to map potholes in a fraction of the time (Raspberry Pi Foundation

2019). However, this will come at a greater level of code complexity as the open-source nature

of the Arduino software will be replaced with custom-designed algorithms in C++.

Now, if the 3-D lidar system needs to map potholes while moving, an accelerometer

should be added to the system. Currently, the lidar system has no method of modelling system

motion. Therefore, if the system moves during data collection, then the entire data set becomes

skewed and is most likely unusable. As a result, adding an accelerometer will aid the model in

determining where each data point is in relation to the other data points.

 Finally, with respect to image processing, point cloud resolution is not consistent due to

rotation of the sensors that incurs faster rotational velocities at the edge of scanning. This leads

to a skewing of the image and a direct comparison with pictures is not possible. Hence, when

measuring an obstacle that is not in the line of sight of the sensor, point cloud accuracy is high

due to the current slow motion of the motors but the depth accuracy is low, which is sensitive to

the orientation of the sensor. Therefore, it would be advantageous to develop a synchronization

mechanism that aligns the sampling rate of the sensor with its orientation.

36

2.6 Potential System Expansion

While the focus has been on developing a cost effective 3-D system that can generate

accurate point clouds, it is relatively straightforward to modify the system to create an effective

two-dimensional (2-D) system that can help with vehicle classification (e.g., (Asborno, Burris,

and Hernandez 2019)) and other transportation-related research activities. Specifically, the code

can be changed to keep the horizontal motor stationary and only turn the vertical motor so the

lidar rangefinder moves in one direction. Moreover, by increasing the angle between each data

point and decreasing the point density, the rangefinder will move faster to better map moving

vehicles. This will need to be done in combination with saving the data on the SD card every ten

or so data points instead of after every single point. Another option on data collection would be

to connect the system directly to a laptop and save the data via the Serial Monitor feature of the

Arduino hardware (i.e., similar to what was accomplished in Chapter 1). Finally, by upgrading

the code using timestamps on the data, this would facilitate a time history of the data; hence, the

system could be set up at any intersection, highway point, or railroad crossing.

37

Chapter 3 Data Collection from a 2-D lidar System Designed for Bicycles

In the previous year of this effort, a two-dimensional (2-D) lidar system was developed

that encountered limited success in recognizing moving vehicles (Blankenau et al. 2018). Based

on these findings, a re-imagining of this system was undertaken to better detect vehicles while

situated on an electric bike (e-bike). Moreover, a methodology to inform the rider of e-bike via

Light Emitting Diodes (LEDs) was incorporated to enhance the rider’s safety. This chapter

explains the hardware, software, and results obtained for this new system.

3.1 Third Generation 2-D lidar System Hardware

The third generation 2-D lidar system uses a different lidar rangefinder from the previous

versions described in Blankenau, et al. (Blankenau et al. 2018). In specific, this new system uses

a Terabee Evo 60 m single point lidar rangefinder (figure 3.1). Here, the Terabee’s most

significant improvement over the Garmin Lite v3 lidar rangefinder is its detection range. While

the Garmin has a maximum range of 40 m, the Terabee Evo 60 m has a maximum range of 60 m

(Garmin Ltd. 2016, TeraBee 2018a, 2017). For the purpose of moving vehicle detection, a

farther detection range increases the likelihood of sensing incoming vehicles and gives the rider a

longer reaction time. In addition, the Terabee was designed for drone applications; hence, it is

smaller, costs marginally less, and weighs half as much as the Garmin lidar version.

Furthermore, the Terabee does not require external circuitry to be controlled by an Arduino

microcontroller (Garmin Ltd. 2016, TeraBee 2018a). The Terabee Evo 60 m sensor uses the

Inter-Integrated Circuit (I2C)/Universal Asynchronous Receiver/Transmitter (UART) backboard

so it can connect to the microcontroller using only two communication wires without extra

circuitry (TeraBee 2018a, 2017).

38

Figure 3.1 Terabee 60 m Evo lidar distance sensor (TeraBee 2017)

Figure 3.2 Arduino Mega 2560 microcontroller (Arduino 2019a)

The Terabee lidar sensor, along with the rest of the system, is connected and controlled

by an Arduino Mega 2560 microcontroller (figure 3.2). The Arduino range of microcontrollers

was preferable to other brands due to its extensive online documentation, open-source software,

and ease of learnability. While the Mega 2560 is larger than other Arduino microcontrollers, it

has 54 digital input/output (I/O) pins that facilitate communication with the lidar rangefinder,

39

stepper motor, micro Secure Digital (SD) card breakout board, and LEDs (Arduino 2019a).

Additionally, the Mega 2560 is powered by a 9 VDC battery while operating and supplying a

nominal 5 VDC necessary to power the various aspects of the entire system (figure 3.3)

(Guadalupi 2019).

Figure 3.3 Third-generation 2-D lidar system circuit diagram

The microcontroller is connected directly to a QSH2818 stepper motor (figure 3.4)

through four digital output pins without need for an external motor driver board to complicate

the circuit or programming. The bipolar stepper motor is rated for 3.8 VDC to 6.2 VDC and has

a NEMA 11 construction. Bipolar stepper motors have only four lead wires compared to unipolar

stepper motors that have either five or six; hence, this results in a simpler circuit (Condit and

Jones 2004). This motor’s small size and weight are ideal for the goals of the mobile lidar

40

system. While the maximum torque output of the motor is 0.07 N⋅m, the lidar rangefinder only

weighs 12 grams; therefore, a larger torque capability is not a priority (TeraBee 2017, Trinamic

Motion Control GmbH & Co. KG 2019).

Figure 3.4 Bipolar stepper motor used in the 2-D lidar system (Trinamic Motion Control GmbH
& Co. KG 2019)

As a stepper motor turns, it does so in discrete increments that allows the lidar

rangefinder to remain at a fixed position during each data sample. The motor chosen has 200

distinct steps per revolution; therefore, each step angle is 1.8° in rotation (Trinamic Motion

Control GmbH & Co. KG 2019). While stepper motors with smaller step angles exist, for the

purposes of vehicle detection, an average vehicle would have to be just over 60 m away from the

lidar system for the change in motor angle to miss the vehicle entirely. Given this information

and, as previously mentioned, the lidar rangefinder will only have a maximum distancing range

of 60 m under ideal conditions, a smaller step angle was determined to be unnecessary (TeraBee

2018b). Finally, the motor’s flat-sided shaft ensures the lidar camera's mounting will turn with

the motor without slipping (Trinamic Motion Control GmbH & Co. KG 2019).

41

The final component powered and controlled by the microcontroller is the Adafruit micro

SD breakout board (figure 3.5). While the Mega 2560 microcontroller can store variables and

code script, it cannot store large amounts of data by itself. Typically, it is connected to a

computer through the universal serial bus (USB) port and the computer stores the data. However,

to keep the system mobile, it must be able to store data collected by itself. The micro SD

breakout board can readily store large data files and is connected to the Arduino board through

one of the in-circuit serial programming (ICSP) pins. While the micro SD board runs on a

nominal voltage of 3.3 VDC, it also has a 5 VDC pin connected to an onboard fixed-output

voltage regulator to lower the voltage and increase the current throughout the board (Texas

Instruments 2016). The micro SD board runs at a relatively high current of 100 mA, twice as

much as the Mega 2560 is capable of supplying through the 3.3 VDC power output pin (Arduino

2019a). To make certain the micro SD board will always have the required current, it must be

powered by a 5 VDC power output pin by the Arduino microcontroller. In addition, this

removable data card allows access to the saved data file without disturbing the rest of the lidar

system.

Figure 3.5 Adafruit micro SD card breakout board (Adafruit 2019)

https://learn.adafruit.com/assets/9891

42

As previously mentioned, the entire 2-D lidar system is powered by a single 9 VDC

rechargeable battery. Here, the Arduino microcontroller requires an input voltage between 7

VDC and 12 VDC to adequately supply either 5 VDC at 20 mA or 3.3 VDC at 50 mA to external

components (Arduino 2019a). There are three pins available to output 5 VDC to the micro SD

card board and the lidar rangefinder to prevent current from being divided between the

components. Moreover, there are digital output pins for power, to control the stepper motor, and

to turn on blind spot LEDs added to alert the rider. Arduino microcontrollers are designed to run

their program if they are properly powered. Therefore, a single-pole, single-throw (SPST) on/off

switch was installed between the 9 VDC battery and the power supply pin on the Mega 2560

microcontroller. When off, the battery's positive line is not connected to the Arduino

microcontroller. Once the switch is turned on, the battery is connected, the microcontroller

receives adequate power and runs the pre-loaded program from the beginning continuously until

the switch is turned off.

Figure 3.6 Main housing box model for 2-D lidar system (left) and removable front wall (right)

43

Housing and mounting components were 3-D printed using computer-aided design

(CAD) software as illustrated in figure 3.6. There were several requirements for the housing

component: it must allow easy access to the circuitry and have holes for the power switch, motor

shaft, lidar rangefinder, and blind spot LED wires. Moreover, it must keep out any dirt and water

the system could encounter while on the back of an e-bike. The largest component, the Arduino

Mega 2560 microcontroller, determined the size and shape of the housing box. The

microcontroller fits along the back side of the housing wall, facing the removable front wall to

readily monitor pin connections. The power switch is mounted to the left side, the motor shaft

goes through the top, and LED wires are fed through the housing's right side. Additionally, a slip

ring is installed on the top of the housing, connecting the lidar rangefinder to the microcontroller,

allowing the camera to turn freely without twisting wires. The front wall is recessed from the rest

of the housing to allow a joining slot and can be removed when lifted. This provides access to

the microcontroller for reprogramming throughout testing along with access to the battery for

charging, as well as the micro SD card for retrieving data.

Figure 3.7 3-D CAD models of block stand for motor (left) and lidar rangefinder mount (right)

44

Due to the housing’s height, the stepper motor requires a small block stand so the shaft

can reach through the top. The final 3-D component firmly connects the lidar rangefinder to the

motor shaft such that it will turn with the motor and not lift off or jostle when the e-bike hits a

bump in the road (figure 3.7). The housings require 16.5 cubic inches of 3-D printing plastic. The

entire system is just over 4 inches tall, 5 in long, and 3.85 in wide. When assembled, the lidar

system weighs roughly 1 pound. Additionally, the system costs roughly $320 excluding 3-D

printing costs (figure 3.8).

Figure 3.8 Assembled 2-D lidar system closed (top left) and wall removed (top right)

45

Figure 3.8 cont. Assembled 2-D lidar system interior (bottom)

3.2 Third Generation 2-D lidar System Software

The Arduino microcontroller uses C++ programming via combined .ino files and there

are extensive open-source libraries and coding examples available online, as well as wiring

connections between the Mega 2560 and each component. In combination, there are collections

of coding functions via libraries (.h files) that serve complementary purposes. For example, the

SD library has several functions that work to communicate with an SD card connected to the

microcontroller. These functions write data, read data, open data files, and erase data files from

SD cards. In general, libraries allow a program to replace dozens of lines of code with one

function to accomplish the same task. For the 2-D lidar system, only three libraries were

required. The Wire.h library allows for I2C communication along Serial Data Line (SDA) and

Serial Clock Line (SCL) options used on the Terabee lidar rangefinder (Arduino 2019d). The

SD.h library will, among other things, write and save data to the micro SD card (Adafruit 2019,

Arduino 2019d). Finally, the Stepper.h library dramatically simplifies commands for the stepper

motor (Trinamic Motion Control GmbH & Co. KG 2019, Arduino 2019d).

46

Figure 3.9 Empty sections of Arduino C++ code

All Arduino program codes have three main sections (figure 3.9). The first section loads

and initializes the libraries and sets up the constants and variables that will be used in the code,

as well as their data types. These data types include floating-point numbers (decimal values),

integers (whole values), unsigned (value magnitudes), byte storage (any sized object in bytes),

and characters (readable letters and words) (Arduino 2019c). The next section of code is the

setup and includes items the program only needs to run once upon startup. This section begins

the communication between the Arduino and external components in the system, creates data

files, and defines pins as output or input signals. The final section of code is the loop that repeats

until the code reaches some stall condition or the power supply is disconnected. This section is

typically where most of the programming takes place and can involve smaller conditional loops,

variable calculations, library functions, and responses to various input signals (Arduino 2019c,

d).

47

Figure 3.10 Blind spot LEDs mounted on e-bike handlebars to identify obstacles in left, center,
and right lanes.

Here, the setup section opens communication over I2C to the lidar rangefinder. Next, it

identifies the blind spot LED pins (figure 3.10) and declares them as output signals. Then, it

creates, sets up, and saves the data file onto the SD card. Finally, the setup section moves the

stepper motor into its starting position. The loop section begins by collecting the line-of-sight

distance reading from the lidar rangefinder and converts that information, along with the motor

position, to Cartesian distances. Next, the time, sweep count, motor angle, line-of-sight distance,

and blind spot LEDs statuses are saved to a text file on the micro SD card. Then, the program

compares the x and y distance set conditions to determine if there is a vehicle approaching the e-

bike in that direction. These conditions are as follows: (1) was an object detected by the lidar

rangefinder, (2) is it closer than 30 meters to the e-bike, and (3) is it close enough to the previous

data point to be an incoming vehicle. If these conditions are all met, the program will turn on the

LED that corresponds to the lane the data indicates, either the right, center, or left lane. The LED

will remain on until the rangefinder returns to that point in space and no data fitting a vehicle’s

criteria occurs. After the LEDs are turned on or off accordingly, the motor turns one step either

48

clockwise or counter-clockwise. Overall, the motor sweeps an area of roughly 100° starting at

40° from perpendicular to the direction of the e-bike. At this point, the program loops back to

take another data point from the lidar rangefinder and repeats the process until the power switch

is turned off (see Appendix for code).

3.3 Stationary Data Collection

While the lidar system was designed for mobile use, it is simpler to fix bugs and make

functional changes before installing the system on the e-bike. Here, several safety conditions

were identified as requirements and measurements of success at the start of testing. A typical

reaction time of 2 seconds was determined to be the minimum time needed for a bicycle rider to

react to an upcoming vehicle (Jurecki, Stańczyk, and Jaśkiewicz 2017). Assuming, when in

motion, upcoming vehicles are moving 20 miles per hour (mph) faster than the electric bicycle.

This is a reasonable assumption for urban and suburban areas as it is unlikely an e-bike would

legally ride along faster roads, such as highways and freeways. Given the reaction time and

speed difference, the critical distance from the e-bike is 58.7 ft (17.9 m). This is the minimum

distance behind the e-bike the lidar system must identify a vehicle to signal the rider with enough

time to react safely.

A second system requirement is to sweep three lanes behind the bicycle fast enough so a

vehicle moving 20 mph faster than the e-bike does not have time to pass the bicycle before the

system can identify it. To do so, the lidar rangefinder must sweep from the starting angle through

the sweep area of 100° and back within the amount of time it would take a vehicle to drive

through the critical distance of 58.7 ft and pass the bike. This results in a minimum motor speed

of 16.667 revolutions per minute (rpm) or 1.745 radians per second (rad/s).

49

The final criterion for success is to distinguish approaching vehicles from stationary or

non-vehicle obstacles. Due to the wide variety of vehicle sizes and potential varying speeds

between them and the lidar system, this is a more difficult criterion to quantify. Using the

minimum step angle possible and the minimum calculated motor speed, the time between each

data sample is 0.018 seconds. Assuming an average vehicle speed 20 mph faster than the e-bike

and a step angle of 1.8°, the lidar system will theoretically collect between three and six data

points per vehicle depending on vehicle size (Federal Highway Administration 2004, Car and

Driver 2019). To account for a vehicle closing the distance to the lidar system at a maximum of

30 mph faster than the lidar system if travelling, a point would be at most 2 ft closer than the

previously collected data point 0.018 seconds before. If the lidar rangefinder is pointed at the

side of the vehicle and turning opposite to the direction of the vehicle’s motion, the second data

point would be at most roughly 15 ft farther away from the lidar system than the previous data

point.

Figure 3.11 Image of initial 2-D lidar system test area

50

Figure 3.12 Two sweeps of the 2-D lidar system during initial stationary testing

After determining the appropriate criteria, the initial stationary tests had the sole purpose

of verifying the functionality and accuracy of the lidar system. While held still at roughly 2 feet

above the ground, the lidar system was aimed at static cars in a parking lot (figure 3.11). Overall,

the system was successfully able to map the area accurately and showed two cars were in front of

the wall of the building (figure 3.12). However, some inaccuracies can be noted in the model

recreation of the parking lot. Primarily the data points vary slightly between each sweep of the

lidar system. Additionally, the model has a curve to the data given the rotational nature of the

system and has difficulty showing the difference between the side and rear of the car on the left.

-10 -5 0 5 10

dist [m]

0

5

10

15

20

25

di
st

 [m
]

Sweep 1

Silver
car

Gray
car

-10 -5 0 5 10

dist [m]

0

5

10

15

20

25

di
st

 [m
]

Sweep 1

Silver
car

Gray
car

51

Figure 3.13 Only lidar data registered during stationary test is a false positive of the road
divider: visual (left) and data model (right)

The second stationary testing effort was largely unsuccessful. While on the sidewalk, the

lidar system was pointed toward oncoming traffic with a speed limit of 30 mph (figure 3.13). It is

noteworthy that most vehicles slowed as they neared the system, possibly out of curiosity or

safety concerns. Despite the potentially lower vehicle speed, the lidar system almost never

collected data points of these vehicles. The time stamp for each data sample showed the lidar

system took 1.9 seconds to turn 100° when it should take a maximum of 1 second. Additionally,

the blind spot LEDs could not accurately distinguish between moving vehicles and empty space.

The microcontroller’s coding was adjusted to address the blind spot LED flaw. It was

discovered that the center LED would always remain on due to the lidar rangefinder’s signal. If

the lidar rangefinder detects no object, the signal received is a measurement of 1.0. This is read

by the microcontroller as an object one meter away from the system, which results in a

permanent object in the center lane. By filtering these data points, the center LED is able to turn

on and off as actual objects enter view. Furthermore, the stepper motor speed was specified to be

16.667 rpm in order to sweep 100° in one second.

-6 -4 -2 0 2 4 6

dist [m]

0

1

2

3

4

5

6

7

8

di
st

 [m
]

lidar data

LED on

52

 Figure 3.14 Successful stationary testing with moving vehicles in 30 mph speed limit (left) and
lit right lane LED with resulting model of snapshot (right)

With these coding changes, the next stationary test had limited success. Here, the lidar

system was turned to face oncoming traffic directly (figure 3.14). Out of six passing cars, only

one turned into the right lane. Unfortunately, the LED remained on for the next three passing

vehicles despite the lidar rangefinder collecting no data from them. Furthermore, there were

instances when the lidar rangefinder detected an object that should have triggered an LED to turn

on; however, one did not.

Two potential issues are mostly likely to blame for the performance in this stationary test.

The first is the elevation of the lidar system. During the tests, the system is resting on the

sidewalk and may only interact with the wheels and not the bumpers of most vehicles. The

second issue is that the sweep time of the lidar system was still too slow and several vehicles

were able to pass though the field of view before the lidar rangefinder is turned in their direction.

The slow rotation speed is affected by the time the system takes to save data to the SD

card between each data sample. On average, one line of code running the lidar system takes 0.3

milliseconds (ms); however, a singular line of code that saves the data onto the micro SD card

-6 -4 -2 0 2 4 6

dist [m]

0

1

2

3

4

5

6

7

8

di
st

 [m
]

lidar data

LED on

53

takes 1.2 ms. Despite best efforts, the code cannot run any faster without risking data corruption.

Since the lidar system can be turned off at any moment, the system must save each data point as

it is collected or it risks corrupting the entire data set. Therefore, the microcontroller must save

each data point as it is collected before turning the stepper motor and collecting the next data

point. However, the time required for a single line of code to save to the data file is four times

the amount of time as the other lines of code. In addition, the amount of time required to run a

loop of the lidar system’s code limits the speed of stepper motor rotation. Overall, the optimized

code will always take 0.021 seconds to run between each data point collected; hence, resulting in

the lidar system operating slower than the programmed stepper motor speed.

Table 3.1 Lidar system timing conditions with a 100° sweep angle and optimized software
running time of 0.021 s

Step Angle and
Motor Speed

Motor Turning Time
[s]

Data Collection Time
[s] Total Sweep Time [s]

1.8° and 16.667 rpm 0.018 0.039 2.17

1.8° and 50 rpm 0.006 0.021 1.50

3.6° and 50 rpm 0.012 0.033 0.92

Therefore, to decrease the time between each data point collected, the motor speed was

increased from 16.667 rpm to the maximum usable speed of 50 rpm. However, due to the small

turning increments, this speed increase is unable to meet the 1 s sweep time requirement (table

3.1). This increased motor speed decreases the time between each data point from 2.17 s to 1.50

s. As a result, the most effective way to decrease the time taken for the lidar system to sweep

100° is to increase the step angle between each data sample. By doubling the steps between each

data point from 1.8° to 3.6°, the amount of data collected is halved and the lidar system does not

54

spend as much time saving data. Thereby, meeting the previous overall threshold desired. As a

result, in theory this system will always detect a vehicle traveling under 20 mph.

Subsequently, the final stationary testing effort was more focused. This involved driving

one car towards at 10, 15, 18, and 20 mph towards the lidar system positioned 1.5 ft above the

ground on a sunny day. Here, one must take a step back and review the operating principles of

lidar. In general, lidar operates via the same fundamentals as radar. A signal is emitted, bounces

off a target object, and then is received by the system. The distance to the target is determined

from the time delay between emitting and receiving the signal. However, due to the nature of

lidar technology, these detection ranges are readily affected by external conditions like infrared

(IR) lighting and reflectivity of target’s surface material (TeraBee 2018b). Furthermore, lidar

rangefinders operate using IR light to bounce off a target object and, as a result, any ambient IR

light, typically from sunlight, can interfere with these data. Consequently, using lidar systems on

sunny days can dramatically reduce the accuracy and range of the sensor (TeraBee 2018b).

As a result, due to sunny weather conditions during the final stationary tests, the lidar

detection distance was reduced and more prone to vehicle detection error. Specifically, the

maximum vehicle approach speed registered was 15 mph and it was only represented by four

data points in the lidar system (figure 3.15). At higher vehicle speeds, the car passed through the

shortened range of detection faster than the lidar system was able to rotate. Therefore, to capture

vehicles moving at higher speeds, the lidar rangefinder would have to sweep the area faster or

operate under more favorable weather conditions to extend the detection range and increase the

time a vehicle would be noticeable. Unfortunately, the only way to augment the lidar rangefinder

speed without altering hardware or electronics is to increase the step angle again and lose data

density. This would not be beneficial since having data points wider apart would increase the

55

likelihood of missing a passing vehicle and/or it would have too few data points for the system to

recognize a vehicle. Furthermore, the weather conditions are outside the possibility of control

and as such, the lidar system must be able to identify vehicles in most every situation. This is

particularly true for weather conditions favorable for bicycle riding; i.e., bright and sunny days.

Figure 3.15 Visual of car (left) registered at a maximum speed of 15 mph (right)

To balance the speed of rotation of the lidar rangefinder and the density of data points

collected, the motor speed was kept at 50 rpm and the step angle was set at 3.6°. Due to the low

torque capabilities of the motor, it is unable to turn faster. Additionally, turning one 1.8° step

between data points will not meet the previously calculated system rotation speed due to code

processing. Finally, any step greater than 3.6° risks too much space between data points for a

vehicle to be missed or not register enough data points to be recognized as a potential vehicle.

3.4 Mobile Data Collection

With the lidar system operating at the best of its capabilities, it was mounted onto the

back of an electric bicycle (figure 3.16) designed and built by previous students at the University

of Kansas (Moore et al. 2015). This e-bike was also used to test the prior vehicle detection lidar

-20 -15 -10 -5 0 5 10 15 20

dist [m]

0

2

4

6

8

10

di
st

 [m
]

lidar distance

LED on

56

system (Blankenau et al. 2018). A large bracket was installed onto the e-bike to hold the lidar

system at a suitable height above the ground to better reflect the signal off the front bumper of

the car. Specifically, the front bumper has a perpendicular angle of incidence to the lidar signal

and is a more reliable part of the vehicle to detect. While the windshield offers a larger target,

they are slanted and made of glass that offers poor reflection capabilities.

Figure 3.16 Completed 2-D lidar system mounted on the back of the electric bicycle

The lidar system was installed on the bracket of the e-bike and had blind spot monitoring

LEDs connected to the Arduino microcontroller through a hole in the side of the 3-D printed

housing, subsequently attached to the front of the e-bike at the handlebars. The LED states are

recorded in the data .txt file along with the lidar distance measurements and motor sweep count.

When a blind spot LED turns on, it is modelled with the lidar data by showing that lane in green.

In an attempt to protect the lidar system from the motions and jostling of the e-bike (found in the

prior effort to impact the accuracy of the system), a block of insulating foam was attached to the

57

shelf of the bracket under the system. However, after the first mobile test, the lidar system had a

slight downward angle which affected the results. As a result, the system would often get signals

reflected from the ground roughly 7 m (20 ft) behind the e-bike (figure 3.17). To correct the

angle of the lidar system, the insulating foam was carved at an angle so lidar system became

level with the road surface.

Figure 3.17 Typical visual behind e-bike (left) and sweep data (right) from first mobile test with
downward lidar angle

Figure 3.18 Example of successful data collection and blind spot monitoring of stationary
vehicles during a mobile test: visual camera (left) and lidar modeling (right)

-20 -15 -10 -5 0 5 10 15 20

dist [m]

0

5

10

15

20

25

di
st

 [m
]

lidar distance

LED on

-20 -15 -10 -5 0 5 10 15 20

dist [m]

0

5

10

15

20

25

di
st

 [m
]

lidar distance

LED on

Sedans
Minivan

58

After fixing the angle of the lidar system, a mobile test occurred that involved riding the

e-bike around a parking lot next to parked cars, slow-moving cars, and bushes at the edge of the

pavement. Throughout this test, the lidar system was powered on and collected lidar data, motor

angles, and the states of the blind spot LEDs. In addition, a video camera was set up to record the

area behind the e-bike to match the lidar data to specific objects.

This mobile testing demonstrated several promising results. The lidar system was able

detect stationary (figure 3.18) and slow-moving vehicles (figure 3.19) in a parking lot at accurate

distances and positions relative to the e-bike. However, moving vehicles were more likely to be

missed as they typically do not register as many data points using the lidar sensor.

Figure 3.19 Example of successful data collection and blind spot monitoring of moving vehicle
during a mobile test: visual camera (left) and lidar modeling (right)

-20 -15 -10 -5 0 5 10 15 20

dist [m]

0

5

10

15

20

25

di
st

 [m
]

lidar distance

LED on

Red Jeep

59

Figure 3.20 Skewed data caused by rapid turning of e-bike during data collection: visual camera
(left) and lidar modeling (right)

Unfortunately, the lidar system is not able to account for every condition. During mobile

testing, the e-bike turns slightly while in motion. Therefore, it is not always oriented in the same

direction throughout a single sweep. This can lead to data points appearing behind other data

points along with other skewed data results (figure 3.20). Additionally, when the e-bike tilts on

its side while turning, the lidar system is momentarily pointed at the ground on one side and

cannot distinguish these data points from actual obstacles or vehicles (figure 3.21). However,

these false positives occur nearly every time the e-bike turns; thus, making them predictable.

Here, adding another criterion to the microcontroller code to ignore lidar data too close to the

lidar system would eliminate these false positives but might result in an increased risk to the

rider due to close vehicles.

-20 -15 -10 -5 0 5 10 15 20

dist [m]

0

5

10

15

20

25

di
st

 [m
]

lidar distance

LED on

Black
sedan

60

Figure 3.21 Leaning while turning the e-bike causes a false-positive result: visual camera (left)
and lidar modeling (right)

Finally, the lidar system is sensitive to jostling. Sharp vertical motion, caused by a

pothole or large crack in the pavement, can cause a momentary loss of power to the system. As a

result, the program restarts after the bump and the motor turns as if it is at the start of a sweep.

This can cause the lidar system to only scan on one side of the e-bike. Therefore, all mobile

testing must be done cautiously and at a slower speed to minimize the impact to the system. The

best potential solution here is to create a more secure connection between the microcontroller

and the rest of the lidar system (similar to what was accomplished in Chapter 2 for the upgraded

3-D lidar system) and implement a better shock absorbing system than foam.

3.5 System Diagnosis

This third generation 2-D lidar system included several changes from the previous

version discussed in the prior report. This new system more closely resembles the first

generation system, as it is simpler in construction. Arduino microcontrollers are more multi-

purpose, easier to learn, and adaptable with circuitry design changes in comparison to the

Raspberry Pi and Adafruit Feather stackable system used in the second generation lidar system.

-20 -15 -10 -5 0 5 10 15 20

dist [m]

0

5

10

15

20

25

di
st

 [m
]

lidar distance

LED on

Ground

61

However, this ease of use and design comes with slower processing speeds. The Raspberry Pi

Model B microcontroller operates at 1 GHz as compared to the Arduino Mega 2560 at 16 MHz.

Therefore, improving performance of the lidar system requires returning to the faster Raspberry

Pi version to decrease the time required between each data point collected. This does come with

a significantly increased level of programming difficulty.

A Terabee lidar rangefinder is used with the new lidar system because it has a greater

distancing range of 60 m than the Garmin LIDAR-Lite v3’s 40 m range at a comparable size and

weight. This lidar rangefinder also does not require an external capacitor; hence, simplifying the

system. Furthermore, the new lidar system does not include a visual camera as the previous lidar

system. This camera, while important for a visual record of testing also uses the OpenCV vehicle

recognition software to visually distinguish between cars and other objects. This software

requires a large database of known vehicles and non-vehicle images to compare to the data. This

might not be necessary for a lidar system and it adds more circuitry while slowing down data

processing.

The majority of the previous lidar system’s weight is a result of the battery pack made of

eight AA batteries. The new lidar system requires only one 9 VDC battery. Additionally, the new

system is more user-friendly. It includes a single on/off switch, and markings on the housing to

show the lidar rangefinder’s starting position. Furthermore, all circuitry is contained inside a 3-D

printed housing to prevent dirt or water affecting or damaging the system. Moreover, the addition

of a slip ring allows the lidar rangefinder to turn freely without twisting or pulling on the wires

connected to the microcontroller. Finally, this new system includes LEDs and coding to attempt

vehicle recognition solely from lidar data.

62

Any future lidar systems based on this or previous systems should include faster

microcontrollers. The Raspberry Pi used prior is a better choice than the Arduino Mega 2560 and

the Terabee 60 m Evo lidar rangefinder has a better range and simpler operation than the Garmin

LIDAR-Lite v3. Additionally, the compact structure and direct soldering connections on the

prior lidar system should reduce potential wiring issues while the system is jostled. Furthermore,

a 3-D accelerometer could add another source of information for the system to help remove

erroneous data points. This information could tell when the e-bike is turning or leaning, and

potentially adjust for skewed data and ignore false-positive results from the ground.

Overall, lidar systems will always suffer from temperamental operation. Weather

conditions will continue to affect ranging distances, and surface reflectivity, opacity, and angle

of incidence can alter lidar readings. Additionally, true vehicle identification may never be

possible using only 2-D lidar systems as a grouping of data points simply indicates roughly an

object’s width. The different variables affecting how a vehicle or other object may approach a

lidar system means it might be impossible to account for every situation with a single model.

Finally, more work is needed to provide repeatable data suited for various traffic and weather

conditions.

63

 References

Adafruit. 2019. "Micro SD Card Breakout Board Tutorial." https://learn.adafruit.com/adafruit-

micro-sd-breakout-board-card-tutorial?view=all.

American Society of Civil Engineers. 2019. "2017 Infrastructure Report Card."

https://www.infrastructurereportcard.org.

Anarkooli, A. J., M. Hosseinpour, and A. Kardar. 2017. "Investigation of factors affecting the

injury severity of single-vehicle rollover crashes: A random-effects generalized ordered

probit model." Accident Analysis and Prevention 106:399-410. doi:

10.1016/j.aap.2017.07.008.

Arduino. 2019a. "Arduino Mega 2560 Rev3." https://store.arduino.cc/usa/mega-2560-r3.

Arduino. 2019b. "Arduino mega Proto Shield Rev3 (PCB)." https://store.arduino.cc/usa/arduino-

mega-proto-shield-rev3-pcb.

Arduino. 2019c. "Language Refrence." https://www.arduino.cc/reference/en/.

Arduino. 2019d. "Libraries." https://www.arduino.cc/en/Reference/Libraries.

Arduino. 2019e. "Servo Library." https://www.arduino.cc/en/reference/servo.

Arduino. 2019f. "Stepper Library." https://www.arduino.cc/en/reference/stepper.

Asborno, M. I., C. G. Burris, and S. Hernandez. 2019. "Truck Body-Type Classification using

Single-Beam Lidar Sensors." Transportation Research Record 2673 (1):26-40. doi:

10.1177/0361198118821847.

Blankenau, I., D. Zolotor, M. Choate, A. Jorns, Q. Homann, and C. Depcik. 2018. "Development

of a Low-Cost LIDAR System for Bicycles." SAE Technical Paper 2018-01-1051. doi:

10.4271/2018-01-1051.

https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial?view=all
https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial?view=all
https://www.infrastructurereportcard.org/
https://store.arduino.cc/usa/mega-2560-r3
https://store.arduino.cc/usa/arduino-mega-proto-shield-rev3-pcb
https://store.arduino.cc/usa/arduino-mega-proto-shield-rev3-pcb
https://www.arduino.cc/reference/en/
https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/reference/servo
https://www.arduino.cc/en/reference/stepper

64

Car and Driver. 2019. "Smart Fortwo Features and Specs."

https://www.caranddriver.com/smart/fortwo/specs.

Chiang, K. W., G. J. Tsai, Y. H. Li, and N. El-Sheimy. 2017. "Development of LiDAR-Based

UAV System for Environment Reconstruction." IEEE Geoscience and Remote Sensing

Letters 14 (10):1790-1794. doi: 10.1109/Lgrs.2017.2736013.

Condit, R., and D. Jones. 2004. "Stepping Motors Fundamentals." http://www.t-es-

t.hu/download/microchip/an907a.pdf.

Earl, B. 2013. "Adafruit Data Logger Shield." https://learn.adafruit.com/adafruit-data-logger-

shield?view=all.

Federal Highway Administration. 2004. "Federal Size Regulations for Commercial Motor

Vehicles." U.S. Department of Transportation.

https://ops.fhwa.dot.gov/freight/publications/size_regs_final_rpt/size_regs_final_rpt.pdf.

Garcia-Gutierrez, J., L. Goncalves-Seco, and J. C. Riquelme-Santos. 2011. "Automatic

environmental quality assessment for mixed-land zones using lidar and intelligent

techniques." Expert Systems with Applications 38 (6):6805-6813. doi:

10.1016/j.eswa.2010.12.065.

Garmin Ltd. 2016. "Lidar Lite v3 Operation Manual and Technical Specifications."

https://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Sp

ecifications.pdf.

Geeetech Wiki. 2012. "Stepper Motor 5V 4-Phase 5-Wire & ULN2003 Driver Board for

Arduino." http://eeshop.unl.edu/pdf/Stepper+Driver.pdf.

https://www.caranddriver.com/smart/fortwo/specs
http://www.t-es-t.hu/download/microchip/an907a.pdf
http://www.t-es-t.hu/download/microchip/an907a.pdf
https://learn.adafruit.com/adafruit-data-logger-shield?view=all
https://learn.adafruit.com/adafruit-data-logger-shield?view=all
https://ops.fhwa.dot.gov/freight/publications/size_regs_final_rpt/size_regs_final_rpt.pdf
https://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
https://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://eeshop.unl.edu/pdf/Stepper+Driver.pdf

65

Goniewicz, K., M. Goniewicz, W. Pawlowski, and P. Fiedor. 2016. "Road accident rates:

strategies and programmes for improving road traffic safety." European Journal of

Trauma and Emergency Surgery 42 (4):433-438. doi: 10.1007/s00068-015-0544-6.

Guadalupi, Arturo. 2019. MEGA2560_Rev3e Schematic.

https://www.arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf.

Jeon, W., and R. Rajamani. 2019. "Active Sensing on a Bicycle for Simultaneous Search and

Tracking of Multiple Rear Vehicles." IEEE Transactions on Vehicular Technology 68

(6):5295-5308. doi: 10.1109/TVT.2019.2911572.

Jurecki, R. S., T. L. Stańczyk, and M. J. Jaśkiewicz. 2017. "Driver’s reaction time in a simulated,

complex road incident." Transport 32 (1):44-54. doi: 10.3846/16484142.2014.913535.

Kelly, M., and S. Di Tommaso. 2015. "Mapping forests with Lidar provides flexible, accurate

data with many uses." California Agriculture 69 (1):14-20. doi: 10.3733/ca.v069n01p14.

Kromer, R. A., D. J. Hutchinson, M. J. Lato, D. Gauthier, and T. Edwards. 2015. "Identifying

rock slope failure precursors using LiDAR for transportation corridor hazard

management." Engineering Geology 195:93-103. doi: 10.1016/j.enggeo.2015.05.012.

Lienert, P., and S. Nellis. 2019. "Cheaper Sensors Could Speed More Self-Driving Cars to

Market by 2022." https://www.reuters.com/article/us-autos-autonomous-lidar/cheaper-

sensors-could-speed-more-self-driving-cars-to-market-by-2022-idUSKCN1TD2MY.

Meier, R. 2019. "Roger Meier's Freeware: CoolTerm." https://freeware.the-meiers.org/.

Mole, C. D., and R. M. Wilkie. 2017. "Looking forward to safer HGVs: The impact of mirrors

on driver reaction times." Accident Analysis and Prevention 107:173-185. doi:

10.1016/j.aap.2017.07.027.

https://www.arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf
https://www.reuters.com/article/us-autos-autonomous-lidar/cheaper-sensors-could-speed-more-self-driving-cars-to-market-by-2022-idUSKCN1TD2MY
https://www.reuters.com/article/us-autos-autonomous-lidar/cheaper-sensors-could-speed-more-self-driving-cars-to-market-by-2022-idUSKCN1TD2MY
https://freeware.the-meiers.org/

66

Moore, P., C. Vande Velde, R. Wagner, and C. Depcik. 2015. "Design and Analysis of Electric

Bikes for Local Commutes." ASME 2015 International Mechanical Engineering

Congress and Exposition, Houston, Texas. doi: 10.1115/IMECE2015-52135.

National Center for Statistics and Analysis. 2018. Summary of Motor Vehicle Crashes: 2016

Data. Traffic Safety Facts. Washington, DC: National Highway Traffic Safety

Administration. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812580.

Neupane, S. R., and N. G. Gharaibeh. 2019. "A heuristics-based method for obtaining road

surface type information from mobile lidar for use in network-level infrastructure

management." Measurement 131:664-670. doi: 10.1016/j.measurement.2018.09.015.

Puente, I., H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias. 2013. "Review of mobile

mapping and surveying technologies." Measurement 46 (7):2127-2145. doi:

10.1016/j.measurement.2013.03.006.

Raspberry Pi Foundation. 2019. "Raspberry Pi 4 Tech Specs."

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/.

TeraBee. 2017. "TeraRanger Evo 60m." https://www.terabee.com/wp-

content/uploads/2019/03/TeraRanger-Evo-60m-Specification-sheet.pdf.

TeraBee. 2018a. "User Manual for TeraRanger Evo single point disntance sensors and

backboards." https://www.terabee.com/wp-content/uploads/2019/03/User-Manual-for-

TeraRanger-Evo-single-point-distance-sensors-and-backboards-1-3.pdf.

TeraBee. 2018b. "TeraRanger Evo 60m sensor potential maximum range in varying outdoor

conditions." https://www.terabee.com/wp-content/uploads/2019/04/TeraRanger-Evo-

60m-Test-Results-Report-Outdoor.pdf.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812580
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.terabee.com/wp-content/uploads/2019/03/TeraRanger-Evo-60m-Specification-sheet.pdf
https://www.terabee.com/wp-content/uploads/2019/03/TeraRanger-Evo-60m-Specification-sheet.pdf
https://www.terabee.com/wp-content/uploads/2019/03/User-Manual-for-TeraRanger-Evo-single-point-distance-sensors-and-backboards-1-3.pdf
https://www.terabee.com/wp-content/uploads/2019/03/User-Manual-for-TeraRanger-Evo-single-point-distance-sensors-and-backboards-1-3.pdf
https://www.terabee.com/wp-content/uploads/2019/04/TeraRanger-Evo-60m-Test-Results-Report-Outdoor.pdf
https://www.terabee.com/wp-content/uploads/2019/04/TeraRanger-Evo-60m-Test-Results-Report-Outdoor.pdf

67

Texas Instruments. 2016. LP2981-N Micropower 100-mA Ultralow Dropout Regulator in SOT-

23 Package." https://www.ti.com/lit/ds/symlink/lp2981-n.pdf.

Trinamic Motion Control GmbH & Co. KG. 2019. "QSH2818 Manual."

https://www.trinamic.com/_scripts/download.php?file=_articles%2Fproducts%2Fmotors

%2Fqmot-qsh2818%2F_datasheet%2FQSH2818_manual.pdf.

Williams, K., M. Olsen, G. Roe, and C. Glennie. 2013. "Synthesis of Transportation

Applications of Mobile LIDAR." Remote Sensing 5 (9):4652-4692. doi:

10.3390/rs5094652.

Xu, J., S. L. Murphy, K. D. Kochanek, B. Bastian, and E. Arias. 2018. Deaths: Final Data for

2016. National Vital Statistics Reports. Hyattsville, MD: National Center for Health

Statistics. https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_05.pdf.

Yang, B. S., Z. Wei, Q. Q. Li, and J. Li. 2013. "Semiautomated Building Facade Footprint

Extraction From Mobile LiDAR Point Clouds." IEEE Geoscience and Remote Sensing

Letters 10 (4):766-770. doi: 10.1109/Lgrs.2012.2222342.

https://www.ti.com/lit/ds/symlink/lp2981-n.pdf
https://www.trinamic.com/_scripts/download.php?file=_articles%2Fproducts%2Fmotors%2Fqmot-qsh2818%2F_datasheet%2FQSH2818_manual.pdf
https://www.trinamic.com/_scripts/download.php?file=_articles%2Fproducts%2Fmotors%2Fqmot-qsh2818%2F_datasheet%2FQSH2818_manual.pdf
https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_05.pdf

68

 Appendix A

Code 1 2-D lidar system’s Arduino microcontroller code

#include <Wire.h> //for I2C/TWI communication using SDA and SCL lines
#include <SD.h> //for reading and writing sd cards
#include <Stepper.h> //for controlling stepper motors

const float pi = 3.14159265; //[]
const int phi = 40; //[deg]
const int rpm = 50; //[rev per min]
const int sweepAngle = 100; //[deg]
const float stepAngle = 1.8; //[deg]
const int stepsPerRevolution = 200; //[]
const int chipSelect = 53; //pin
const int leftLED = 40; //pin
const int centerLED = 41; //pin
const int rightLED = 42; //pin
const int carGain = 200; //[mm] =.2[m] (car is 30mph faster than bike)
const int carLength = -4500; //[mm]
int currentDirection = -1; //1 is CW, -1 is CCW
const int criticalDistance = 27000; //27000[mm] = 27[m] ~ 88[ft]
const int leftLaneStart = -2000; //[mm] assuming bike is in center of lane
const int rightLaneStart = 2000; //[mm]
const int leftLaneEnd = -6000; //[mm]
const int rightLaneEnd = 6000; //[mm]
uint8_t evo[3]; //byte storage, no +/- signs, just number
int sweepCount = 0; //[]
float currentAngle = phi; //[deg]
uint16_t currentDistance; //[mm], no +/- signs, just number
float xDistance; //[mm]
float yDistance; //[mm]
float previousyDistance; //[mm]
float storedLeftAngle; //[deg]
int storedLeftSweep; //[]
float storedCenterAngle; //[deg]
int storedCenterSweep; //[]
float storedRightAngle; //[deg]
int storedRightSweep; //[]

File dataFile; //create data file
Stepper myStepper(stepsPerRevolution, 8, 9, 11, 12);

void setup()
{
 //Setup Lidar Communication

69

 #define LidarEvo 0x31 //declare address
 Wire.begin(); //open communication over I2C

 //Setup LED pins
 pinMode(leftLED, OUTPUT);
 pinMode(centerLED, OUTPUT);
 pinMode(rightLED, OUTPUT);
 digitalWrite(leftLED, LOW);
 digitalWrite(centerLED, LOW);
 digitalWrite(rightLED, LOW);

 //SD Card Setup
 SD.begin(chipSelect);
 SD.remove("test.txt"); //delete existing data file
 dataFile = SD.open("test.txt", FILE_WRITE); //create blank data file
 dataFile.println("Time, Sweep, Angle, Distance, Left, Center, Right");
 dataFile.close(); //Move motor to initial position

 myStepper.setSpeed(20);
 myStepper.step(currentDirection*phi/stepAngle);
 delay(100);
}

void loop()
{
 //collect lidar distance data
 Wire.beginTransmission(LidarEvo);
 Wire.write(0x00);
 Wire.endTransmission();
 delayMicroseconds(500);
 Wire.requestFrom(LidarEvo, 3);
 evo[0] = Wire.read(); //First byte
 evo[1] = Wire.read(); //Second byte
 evo[2] = Wire.read(); //Byte of checksum
 currentDistance = (evo[0]<<8) + evo[1]; //[mm]
 xDistance = currentDistance*cos(currentAngle*pi/180); //[mm]
 yDistance = currentDistance*sin(currentAngle*pi/180); //[mm]

 //prepare sd card and data file
 String dataString = String(millis()) + "," + String(sweepCount) + "," + String(currentAngle) +
"," + String(currentDistance) + "," + String(digitalRead(leftLED)) + "," +
String(digitalRead(centerLED)) + "," + String(digitalRead(rightLED)) + "\n"; //gather current
data measurements
 dataFile = SD.open("test.txt", FILE_WRITE); //open data file
 dataFile.println(dataString); //add current data measurements
 dataFile.close(); //save and close file

70

 //identify cars and turn on LEDs
 if ((yDistance <= criticalDistance) && (previousyDistance-yDistance <= carGain) &&
(previousyDistance-yDistance >= carLength) && (currentDistance != 1) && (currentDistance !=
0)) //criteria that recognizes a closing in car and no null data
 {
 if ((xDistance <= leftLaneStart) && (xDistance >= leftLaneEnd)) //only in the left lane
 {
 digitalWrite(leftLED, HIGH); //turn on LED indicator
 storedLeftSweep = sweepCount; //remember the posistion the car was at
 storedLeftAngle = currentAngle;
 }
 if ((xDistance > leftLaneStart) && (xDistance < rightLaneStart)) //only in the center lane
 {
 digitalWrite(centerLED, HIGH);
 storedCenterSweep = sweepCount;
 storedCenterAngle = currentAngle;
 }
 if ((xDistance >= rightLaneStart) && (xDistance <= rightLaneEnd)) //only in the right lane
 {
 digitalWrite(rightLED, HIGH);
 storedRightSweep = sweepCount;
 storedRightAngle = currentAngle;
 }
 }

 //tun off LEDs at same angle on next sweep
 if ((digitalRead(leftLED) == HIGH) && (sweepCount == storedLeftSweep+1) &&
(storedLeftAngle == currentAngle))
 {
 digitalWrite(leftLED, LOW);
 }
 if ((digitalRead(centerLED) == HIGH) && (sweepCount == storedCenterSweep+1) &&
(storedCenterAngle == currentAngle))
 {
 digitalWrite(centerLED, LOW);
 }
 if ((digitalRead(rightLED) == HIGH) && (sweepCount == storedRightSweep+1) &&
(storedRightAngle == currentAngle))
 {
 digitalWrite(rightLED, LOW);
 }

 //Change direction as needed
 if (currentAngle <= phi)
 {

71

 currentDirection = -1; //CCW
 sweepCount++;
 }
 else if (currentAngle >= sweepAngle+phi)
 {
 currentDirection = 1; //CW
 sweepCount++;
 }

 //turn motor one step
 myStepper.setSpeed(rpm);
 myStepper.step(2*currentDirection);

 //Update current angle and distances
 currentAngle = currentAngle-(currentDirection*2*stepAngle);
 previousyDistance = yDistance;
}

	Depcik_LIDAR, Electric Bikes, and Transportation Safety_Jan 2020_ProjectCover.pdf
	Depcik_LIDAR^J Electric Bikes^J and Transportation Safety_Jan 2020_FinalPDF.pdf
	Disclaimer
	Abstract
	Chapter 1 Expansion of Mobile LIDAR Data Collection System
	1.1 Abstract
	1.2 Background
	1.3 Hardware and Software
	1.3.1 Configuration I: Servo Motors
	1.3.2 Configuration II: Stepper Motors
	1.3.3 Point Cloud Software

	1.4 Results and Discussion
	1.5 Conclusions

	Chapter 2 Upgrades to 3-D Mobile lidar Data Collection System
	2.1 Hardware Upgrades
	2.2 Software Upgrades
	2.3 Initial System Performance Tests
	2.4 Pavement Quality Tests
	2.5 Future Work
	2.6 Potential System Expansion

	Chapter 3 Data Collection from a 2-D lidar System Designed for Bicycles
	3.1 Third Generation 2-D lidar System Hardware
	3.2 Third Generation 2-D lidar System Software
	3.3 Stationary Data Collection
	3.4 Mobile Data Collection
	3.5 System Diagnosis

	References
	Appendix A

Accessibility Report

		Filename:

		LIDAR, Electric Bikes, and Transportation Safety – Phase II_202001_REM.pdf

		Report created by:

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization:

		DOT, NTL

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 26

		Failed: 3

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Failed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

